An Ac-like transposable element family with transcriptionally active Y-linked copies in the white campion, Silene latifolia.

نویسندگان

  • Ellen J Pritham
  • Y Hi Zhang
  • Cédric Feschotte
  • Rick V Kesseli
چکیده

An RFLP genomic subtraction was used to isolate male-specific sequences in the species Silene latifolia. One isolated fragment, SLP2, shares similarity to a portion of the Activator (Ac) transposase from Zea mays and to related proteins from other plant species. Southern blot analysis of male and female S. latifolia genomic DNA shows that SLP2 belongs to a low-copy-number repeat family with two Y-linked copies. Screening of a S. latifolia male genomic library using SLP2 as a probe led to the isolation of five clones, which were partially sequenced. One clone contains two large open reading frames that can be joined into a sequence encoding a putative protein of 682 amino acids by removing a short intron. Database searches and phylogenetic analysis show that this protein belongs to the hAT superfamily of transposases, closest to Tag2 (Arabidopsis thaliana), and contains all of the defined domains critical for the activity of these transposases. PCR with genomic and cDNA templates from S. latifolia male, female, and hermaphrodite individuals revealed that one of the Y-linked copies is transcriptionally active and alternatively spliced. This is the first report of a transcriptionally active transposable element (TE) family in S. latifolia and the first DNA transposon residing on a plant Y chromosome. The potential activity and regulation of this TE family and its use for Y chromosome gene discovery is discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary history of Silene latifolia sex chromosomes revealed by genetic mapping of four genes.

The sex chromosomes of dioecious white campion, Silene latifolia (Caryophyllaceae), are of relatively recent origin (10-20 million years), providing a unique opportunity to trace the origin and evolution of sex chromosomes in this genus by comparing closely related Silene species with and without sex chromosomes. Here I demonstrate that four genes that are X-linked in S. latifolia are also link...

متن کامل

Evidence for Degeneration of the Y Chromosome in the Dioecious Plant Silene latifolia

The human Y--probably because of its nonrecombining nature--has lost 97% of its genes since X and Y chromosomes started to diverge [1, 2]. There are clear signs of degeneration in the Drosophila miranda neoY chromosome (an autosome fused to the Y chromosome), with neoY genes showing faster protein evolution [3-6], accumulation of unpreferred codons [6], more insertions of transposable elements ...

متن کامل

Analysis and evolution of two functional Y-linked loci in a plant sex chromosome system.

White campion (Silene latifolia) is one of the few examples of plants with separate sexes and with X and Y sex chromosomes. The presence or absence of the Y chromosome determines which type of reproductive organs--male or female--will develop. Recently, we characterized the first active gene located on a plant Y chromosome, SlY1, and its X-linked homolog, SlX1. These genes encode WD-repeat prot...

متن کامل

Localization of male-specifically expressed MROS genes of Silene latifolia by PCR on flow-sorted sex chromosomes and autosomes.

The dioecious white campion Silene latifolia (syn. Melandrium album) has heteromorphic sex chromosomes, XX in females and XY in males, that are larger than the autosomes and enable their separation by flow sorting. The group of MROS genes, the first male-specifically expressed genes in dioecious plants, was recently identified in S. latifolia. To localize the MROS genes, we used the flow-sorted...

متن کامل

MITE insertions in Silene latifolia genome, p. 1 Active miniature transposons from a plant genome and its non-recombining Y chromosome

Mechanisms involved in eroding fitness of evolving Y-chromosomes have been the focus of much theoretical and empirical work. Evolving Y-chromosomes are expected to accumulate transposable elements (TEs), but it is not known whether such accumulation contributes to their genetic degeneration. Among TEs, miniature inverted-repeat transposable elements are non-autonomous DNA transposons, often ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 165 2  شماره 

صفحات  -

تاریخ انتشار 2003